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ABSTRACT

We introduce a novel method to unite deep learning with biology by which generative adversarial
networks (GANs) generate transcriptome perturbations and reveal condition-defining gene expression
patterns. We find that a generator conditioned to perturb any input gene expression profile simulates
a realistic transition between source and target RNA expression states. The perturbed samples follow
a similar distribution to original samples from the dataset, also suggesting these are biologically
meaningful perturbations. Finally, we show that it is possible to identify the genes most positively
and negatively perturbed by the generator and that the enriched biological function of the perturbed
genes are realistic. We call the framework the Transcriptome State Perturbation Generator (TSPG),
which is open source software available at https://github.com/ctargon/TSPG.

Keywords Generative Adversarial Networks · Bioinformatics · Adversarial Examples

1 Introduction

RNA sequencing (RNAseq) uses the capabilities of high-throughput DNA sequencing methods to provide insight
into the transcriptional state of a biological sample [1]. An RNAseq gene expression profile can be coupled with
metadata describing the sample, thus placing it in a biological context such as tissue source, aberrant phenotype such
as disease, and other variables such as age, sex, medical history, and environmental factors. Traditional methods of
high dimensional analysis are challenging to use on RNAseq datasets because of the high feature to sample ratio and
often high noise levels in biological systems. Modern machine learning and deep learning approaches have begun to
surmount these obstacles and are increasingly used to cluster and classify gene expression profiles into meaningful
groups that correspond with metadata labels [2, 3, 4].

Deep learning [5] has had tremendous success in image [6, 7] and natural language [8, 9] processing tasks due to
its ability to abstract high level features from highly dimensional and noisy datasets. Deep learning has also been
incorporated as the underlying framework behind powerful generative models such as variational autoencoders (VAEs)
[10] and generative adversarial networks (GANs) [11]. GANs, a focus of this work, consist of a generator that captures
a data distribution and a discriminator that estimates the probability that a sample came from the training data rather
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than the generator. As training progresses, the generator produces increasingly realistic data while the discriminator
becomes more adept at distinguishing real from fake. GANs have surged in popularity in the computer vision field due
to several works creating exceptionally realistic images [12, 13, 14].

While deep learning has proven itself useful in a variety of fields, surprising vulnerabilities exist within trained models.
Adversarial examples are inputs to neural networks that an attacker has designed with the intention to cause the model
to make a mistake [15, 16]. The general anatomy of an adversarial example consists of a calculated perturbation that is
added to an input, which is subsequently passed to a trained model. Adversarial examples are generated to "trick" a
neural network into confidently choosing a target class. For example, image x, classified as a horse by a neural network,
can be subtly perturbed and classified by the same neural network as a human. Previous works [16, 17, 18] have led to
Xiao et al [19] proposing AdvGAN, a framework to produce perceptually realistic images in an efficient manner using
GANs. In this report, we adapt the AdvGAN framework to model the transition between tissue transcriptome states.

Within the field of molecular biology, a limited amount of work involving generative models has been proposed.
Ghahramani et al [20] proposed a Wasserstein GAN [21] to integrate epidermal datasets by generating samples that
cover the full diversity of cell types. Additionally, the authors use the generative model for both dimensionality reduction
and to observe the effect of cell state perturbations on gene expression. Dizaji et al [22] introduced a semi-supervised
approach to generate gene expression profiles of target genes using landmark genes and GANs. This work adapts the
AdvGAN framework to analyze gene expression patterns during cellular state transformations by training a generator
on a specific set of genes with a conditional target.

2 Methods

2.1 Datasets and Dataset Preparation

This study uses two gene expression matrices (GEMs) containing RNAseq expression levels for human tissue and
tumor samples. The first dataset tested is the Genotype-Tissue Expression (GTEx) dataset, which contains 11,688
samples across 56,202 genes representing 53 uniquely labeled tissue types. The second dataset considered is the
Cancer Genome Atlas (TCGA) dataset [23], which contains 11,092 patients across 60,483 genes representing 33 unique
tumor types of distinct disease progression. We normalize expression levels by scaling each feature (gene) between
the range [0, 1]. We use the Broad Institute Molecular Signature Database gene subsets (MSigDB v6.2) (MSigDB)
[24] to extract sub-GEMs from GTEx and TCGA of lower dimensionality in order to reduce genetic complexity
and obtain more interpretable results. We normalize the GEM data using the Python sci-kit learn package [25]. All
neural network development and training is performed using Tensorflow [26]. Training of the networks utilized the
Clemson University Palmetto Cluster using Nvidia V100 GPUs. The entire implementation is available on GitHub at
https://github.com/ctargon/TSPG.

2.2 Transcriptome State Perturbation Generator (TSPG)

The general framework of the GAN used in this work was adapted from the AdvGAN model introduced by [19], which
was influenced and derived from previous models and criterion metrics from both the GAN research community and
the adversarial attack community. To formulate the adversarial generation that TSPG aims to perform, let us consider
an input pair (xi, yi) to be the ith input pair of a dataset consisting of feature vector xi ∈ X generated according to
an unknown distribution xi ∼ Pdata, where X ⊆ Rn with n being the number of genes (features), and yi ∈ Y the
corresponding label. The goal of a classification system, which we will refer to as the target model, is to learn a mapping
f : X → Y from input domain to label domain. The goal of the adversary (in this case, the generator) is to learn to
produce xadv that is classified as f(xadv) = t where t is a target (the targeted case) and different from the ground truth
label y.

The TSPG framework can be seen in Figure 1 and contains a generator G, a discriminator D, and a pretrained target
network f . G takes an input vector x, with the number of genes being the number of dimensions, and generates a
perturbation G(x). G(x) is added to the original instance to create an adversarial example xadv = x+G(x) which is
then passed to networks D and f . The goal of D is to encourage the generated example xadv to be indistinguishable
from data sampled from Pdata, which is quantified by LGAN and shown below:

LGAN = Ex[logD(x)]− Ex[log(1−D(x+G(x)))] (1)
For LGAN , we use the least squares objective proposed in [27], as it has been shown to stabilize training and boost
results. The network f outputs a class prediction for input xadv based on the pretrained weights. The goal of the
generator is to produce adversarial example xadv that is classified as t by f . The loss for tricking f in such a manner,
proposed by [17], is:

Lf
adv = max(maxi6=tf(xadv)i − f(xadv)t, κ) (2)
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Figure 1: Architecture of transcriptome state perturbation generator (TSPG).

where t is the target class, and we set confidence κ = 0. This loss term encourages the generator to produce data that
fools f into predicting t.

We also use two terms, Lnorm and Ltd, which are used to stabilize training and encourage xadv to fall within the target
data distribution Pt. Lnorm is simply the L2 norm placed on the generated perturbation G(x):

Lnorm = ‖G(x)‖2 (3)

This loss encourages the overall perturbation to be smaller, and we found this stabilizes training and produces better
results. The final criterion for the loss term, Ltd, is a measure of L1 distance between an adversary example xadv and a
randomly sampled target vector rt, where rt ∼ N (µt,Σt). N (µt,Σt) is a normal distribution modeled with the mean
genetic expression level µ of target class t and covariance matrix Σ of target class t. The loss is formulated as:

Ltd = |xadv − rt| (4)

Ltd encourages the generator to create data more tightly within the bounds of the target class distribution. Similar
principles are used in [12, 28] to reduce the space of possible mappings and create sharper data instances. Together, the
loss for G can be summed as:

L = LGAN + Ladv + Lnorm + Ltd (5)

The architectures used by G and D are similar to those used in [19], which are influenced from image to image
translation architectures [12, 28]. G adopts an hourglass shaped structure which contains three downsampling fully
connected layers of sizes 512, 256, and 128, followed by three residual blocks, finishing with two upsampling layers of
sizes 256 and 512 and then a layer of the same shape as the input dimension. The rectified linear unit (ReLU) activation
function is used on each layer barring the final output, which uses the hyperbolic tangent (tanh). Each hidden dense
layer is coupled with a batch normalization layer using default Tensorflow parameters. The tanh function allows the
generator to produce a perturbation ranging from [−1, 1]. After the xadv = x + G(x) operation, xadv is clipped to
values between [0, 1], which are valid gene expression values.

The discriminator uses a small architecture containing three dense layers of units 512, 256, and 128. Each dense layer is
followed by a batch normalization layer and a leaky ReLU activation function with alpha set to 0.2. The target model
used in the experiments contains three dense layers of size 1024, 512, and 128, each layer using the ReLU activation
function. All three networks are trained using the Adam optimizer [29] with learning rates 0.0002, 0.0001, and 0.001
for the generator, discriminator, and target model, respectively. The generator uses bootstrapping by randomly selecting
80% of each class for training and holding out the remaining 20% for testing.

2.3 Data Visualization

Once a generator is trained using the framework and a given target, an input vector was fed to the network for inference,
resulting in a perturbation and newly spawned adversarial example. We chose to perturb 100 randomly chosen samples
from a given GEM dataset, and then we plotted the results using t-SNE [30] along with the samples from 10 randomly
selected classes, including the target class. This created a low dimensional representation of the sample distributions,
allowing us to observe what distribution the adversarial examples follow. We also provide methods to view the RNAseq
changes in the form of a heatmap. The components involved in a targeted perturbation generation include a sample, a

3



A PREPRINT - JULY 2, 2019

Figure 2: Adversarial generation for Nerve-Tibial target using the Hallmark Hedgehog Signaling gene set. t-
SNE plot of original and perturbed samples using the Hallmark Hedgehog Signaling gene set (left). Heatmap of cellular
transformation from Brain-Hippocampus to Nerve-Tibial (right). Perturbation (P ) ranges from [−1, 1], which is added
to original sample (X), then adversarial example (xadv) is clipped to [0, 1]. The mean expression vector (µT ) of the
target class (Nerve-Tibial) is shown.

perturbation, and an adversarial example. Additionally, we used the mean vector of a target class to visually inspect
how similar an adversarial example is to the target class. With these ingredients, we can produce a plot depicting a
gene-wise transformation of an input cell to a target cell, including the RNAseq expression level differences.

2.4 Gene Set Functional Profiling

The top and bottom twenty most highly perturbed genes were input into the ToppFun tool (https://toppgene.cchmc.
org) [31] in March 2019. Occasionally, the HGNC symbol was not recognized for 1/20 genes in the list. Functional
labels were considered significant at a q-value Benjamini and Hochberg corrected False Discovery Rate of q < 0.0001.

3 Results

We first examined the raw adversarial generation capabilities using 50 "Hallmark" gene sets defined in MSigDB. Table
1 contains the results for various Hallmark gene sets being used as feature input to the TSPG framework, as well as the
corresponding target class. The furthest right column, f Accuracy, represents the target model accuracy when the input
is perturbed from any input source (i.e. all samples from the dataset) and the label is the target class. Thus, the accuracy
represents the ability of the generator to "trick" the target model into classifying a sample as a specified class.

Table 1: Accuracy of target network on perturbed datasets.

Gene Set Num Genes Target Class f Accuracy

Hallmark Hedgehog Signaling 36 Nerve - Tibial 100%
Hallmark Peroxisome 107 Brain - Spinal Chord 100%
Hallmark Apoptosis 161 Lung 99.9%
Hallmark E2F Targets 200 Artery - Coronary 99.8%
Hallmark All 4386 Thyroid 100%
Hallmark All 4386 Heart - Left Ventricle 100%
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The high classification accuracy suggests that the generator is powerful enough to exploit the decision boundary the
target model defined no matter what class the input came from. While this is in itself interesting, we still did not know
what distribution the adversarial samples might follow. This left us with three questions: 1) Will generated adversarial
examples follow the distribution of the target class? 2) Are the perturbations created by the generator nonsensically
changing expression values to satisfy the criterion of tricking a target model? 3) Do the most highly perturbed genes
encode biological function of the target condition?

To test if the adversarial examples exhibited similar high dimensional structure as the original target samples, we used
the dimensionality reduction and visualization tool t-SNE [30]. This technique allowed us to ask if perturbed samples
clustered with the target condition distribution. In Figure 2, ten different classes from the GTEx dataset were plotted,
as well as 100 randomly chosen adversarial examples that were created from varying source tissues in the original
dataset. Each sample was originally 36 dimensions, representing the 36 genes in the Hallmark Hedgehog Signaling
gene set. We observed that the original (unperturbed) Nerve-Tibial samples (dark cyan) and the adversarial (perturbed)
Nerve-Tibial samples (black) formed a cluster on the left side of the plot. The adversarial (black) points were originally
100 different samples from the GTEx dataset of varying class description, then were passed through the generative
process as described in Figure 1, thus transforming these points to the target condition. It is evident from Figure 2 that
the perturbed samples follow a similar data distribution as the original target condition.

The right hand side of Figure 2 shows the step by step process of generating an adversarial example. In this case, x
was an original sample from the GTEx dataset of class type Brain-Hippocampus. x was passed through the generator
to produce P , which was then added to x to create adversarial example xadv. P ranges between [−1, 1] to allow the
generator to entirely "activate" or "silence" any gene. xadv was clipped to valid expression values in the range of [0, 1].
This generated example xadv was then classified as target class t by a pretrained model (the target model). What was
left are the perturbation values P describing the exact gene expression changes, on a per gene basis, that occurred in
order to transform, in this instance, Brain-Hippocampus tissue to Nerve-Tibial tissue. Additionally, we showed µt, the
mean expression vector for the target class (Nerve-Tibial in this example) for direct visual comparison between an
adversarial example xadv and the target class.

We also include Figures 3 and 4 as examples of TSPG working with a larger input gene set where all 4,386 Hallmark
genes were combined. In this case, the perturbed samples clustered with original samples of both target classes (Heart -
Left Ventricle and Muscle-Skeletal). Additionally, if we visually inspect the similarity between xadv and µT in each
heatmap, the expression vectors appear to be similar. This experiment demonstrates the ability of TSPG to generalize to
variably sized input gene sets.

The classification accuracy, t-SNE visualizations, and perturbation heatmap results suggest that the perturbation of the
hallmark gene expression patterns shift the state of the source tissue to the target tissue. To test if the perturbed genes
are at all relevant to the source or target tissue, we randomly selected a sample from each of the 53 tissues available in
the GTEx dataset and passed it through the generator that was trained with Heart, Left Ventricle being the target. Then,
we took the 20 most positively perturbed genes (genes being "turned on" or expressed) and the 20 most negatively
perturbed genes (genes being "turned off" or silenced) for each of the 53 state transitions. Interestingly, only 85 out
of 4,386 genes were found in the top 20 most perturbed list for each of the 53 GTEx experiments suggesting that the
same genes tend to be perturbed towards the target tissue. On the other hand, the twenty most negatively perturbed
genes summed to 642 unique genes suggesting that a greater variety of genes must be "turned off" depending on the
phenotype of the source tissues.

We next asked if the 20 most positively perturbed genes out of the pool of 4,386 genes were enriched (B&H FDR q
< 0.0001) for biological function relevant to the target tissue (i.e. Heart-Left Ventricle). A representative enriched
term for each of the 16 term categories and the total number of enriched terms across all 53 experiments is shown in
Table 2. Clearly, many of the enriched terms are related to muscle and heart biology. Conversely, we asked if the 20
most negatively perturbed genes were related to the source tissue’s biology. Supplemental Table S1 shows the most
significant PubMed scientific articles that were non-randomly associated with these genes. We found that the source
tissue is related to the PubMed articles associated with these genes in most cases. All term enrichments can be explored
in Supplemental Table S2.
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Figure 3: Adversarial generation for Heart-Left Ventricle target using all Hallmark genes as the input gene set.
t-SNE plot of original and perturbed samples using the all Hallmark genes (left). Heatmap of cellular transformations
from Brain-Amygdala, Esophagus-Mucosa, Pancreas, and Thyroid to to Heart-Left Ventricle (right). Perturbations
(P ) range from [−1, 1], which is added to original sample (x), then adversarial example (xadv) is clipped to [0, 1]. The
mean expression vector (µT ) of the target class (Heart-Left Ventricle) is shown.

Figure 4: Adversarial generation for Muscle-Skeletal target using all Hallmark genes as the input gene set. t-
SNE plot of original and perturbed samples using the all Hallmark genes (left). Heatmap of cellular transformations
from Brain-Cerebellum, Breast-Mammary, Liver, and Spleen to to Muscle-Skeletal (right). Perturbations (P ) range
from [−1, 1], which is added to original sample (x), then adversarial example (xadv) is clipped to [0, 1]. The mean
expression vector (µT ) of the target class (Muscle-Skeletal) is shown.
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Table 2: Enriched Biological Functions of the Top Twenty Most Positively Perturbed Genes Leading to the Target
Condition Heart-Left Ventricle

Term Category Enriched
Terms*

First Hit Term Description q-value

Coexpression 933 Rat Breast_Giusti09_300genes 1.72E-25
Coexpression Atlas 985 Heart muscle 8.01E-22
Computational 315 Neighborhood of MYL2 5.29E-22
Disease 969 Cardiomyopathy, Familial Idiopathic 1.47E-09
Drug 1522 Doxorubicin 2.88E-11
Gene Family 22 F-type ATPases|Mitochondrial complex V: ATP synthase 2.28E-11
GO: BP 3311 Striated muscle contraction 2.01E-15
GO: CC 852 Sarcomere 2.53E-15
GO: MF 225 Structural constituent of muscle 8.08E-06
Human Phenotype 867 Sudden death 2.04E-07
Interaction 280 VDAC1 interactions 1.94E-05
MicroRNA 1 Hsa-miR-610:mirSVR_nonconserved_lowEffect-0.1-0.5 3.77E-05
Mouse Phenotype 1419 Cardiac hypertrophy 2.47E-09
Pathway 1340 Cardiac muscle contraction 4.01E-14
Pubmed 10774 Clinical features and outcome of hypertrophic cardiomyopathy

associated with triple sarcomere protein gene mutations.
1.13E-19

ToppCell Atlas 209 MouseAtlas Mouse Multiple Adult muscle Subtype
Heart_cardiac muscle cell

2.90E-18

TFBS 21 V$MEF2_02 8.40E-06

Figure 5: Adversarial generation for three subtypes of Kidney cancer using all Hallmark genes as the input gene
set. t-SNE plot and corresponding heatmap of cellular transformation from healthy to KICH (A), healthy to KIRC (B),
and healthy to KIRP (C). Perturbations (P ) range from [−1, 1], which is added to original sample (X), then adversarial
example (Xadv) is clipped to [0, 1]. The mean expression vector (µT ) of the target class is shown.

In order to determine the efficacy of TSPG on more subtle transcriptome state transitions, we tested TSPG on samples
from the same tissue of origin, namely healthy and cancerous kidney tissue extracted from the TCGA project. Using
all 4,386 Hallmark genes as input, we examined the transcriptome transitions between healthy (“solid tissue normal”)
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into one of three renal tumor subtypes: clear cell renal carcinoma (KIRC), renal papillary cell carcinoma (KIRP), and
chromophobe renal cell carcinoma (KICH) as shown in Figure 5. For each transition between healthy and the three
tumor sub-types, we identified the genes that were among the top 20 genes most positively and negatively perturbed
during transition (Supplemental Table S2). For the most negatively perturbed genes in each case, the genes tended to be
enriched for top expressed genes in kidney tissue as defined by the GenitoUrinary Development Molecular Anatomy
Project (GUDMAP) database [32]. In contrast to the negatively perturbed genes appearing to have a normal kidney
gene expression pattern, the top positively perturbed genes showed different enriched functions for each tumor subtype.
A notable enriched function in KIRC genes was an association with genes involved in hypoxia, a hallmark of tumor
progression where tumors avoid senescence by increasing blood supply (e.g. MSigDB hallmark hypoxia gene set was
enriched). A notable function enriched in positively perturbed KIRP genes is an enrichment in membrane-binding
annexin activity (e.g. [33]), a dysregulated function in cancer [34] including renal carcinoma [35, 17]. Finally, positively
perturbed genes from healthy to KICH exhibited an enrichment for genes upregulated by the estrogen receptor alpha
(e.g. [36]), and estrogen responsive genes have been implicated in kidney cancer [37]. These results suggest that
negatively perturbed genes exhibit similar functions when transitioning to any RCC subtype, but the positively perturbed
genes encode collective function unique to each subtype. Simply put, negatively perturbed genes are related to source
tissue (i.e. healthy kidney) functionality, while positively perturbed genes relate to functionality specific to the target
tissue (i.e. three cancerous kidney subtypes).

4 Discussion

Our preliminary experiments confirmed that neural networks used for classification of RNAseq data are indeed
vulnerable to adversarial attacks. The results of Table 1 show that it is actually quite trivial for the generator to "trick"
the target model into a specific classification no matter what the input is. This is likely due to the fact that the target
model is relatively simple and was not trained using any defensive strategies against attacks. It is noteworthy that [15]
found that the fundamental nature of adversarial examples do not differ across models trained on different subsets of data
or models that had varying hyperparameters (number of layers, number of neurons in each layer, weight normalization
schemes, etc.). Thus, we decided it was not necessary to test across different MLPs. Additionally, a noteworthy standard
for adversarial attacks in image processing is that the perturbation is small in magnitude (equation 3); ideally, the
perturbation to an input is not noticeable to the human eye. While this criterion is foundational for adversarial attacks
in the computer vision domain, we are more interested in making meaningful transitions from source to target states,
not in meaninglessly fooling a neural network. Therefore, despite including equation 3 to stabilize training, it was
not imperative that the perturbations were small in magnitude. A large shift in gene expression may be required to
transition between two disparate tissue states.

Due to the remarkable success of GANs in various data intensive applications, the objective of fooling a MLP was
expected to be accomplished trivially. Therefore, we decided to take the adversarial attack paradigm several steps
forward and demonstrated that generative adversarial networks produce biologically meaningful perturbations when
trained under the proper criteria. We adapted and added criteria to the AdvGAN framework, which originated from
within the computer vision community, to produce meaningful state transitions. While we used equation 3 to limit the
magnitude of the perturbation, we found that adding equation 4 to the generator loss function significantly improved the
realism of the results with respect to t-SNE plots and heatmap results.

What do these results mean for the study of biological systems? While the results of this analysis pointed to the near
perfect adversarial attack rates (Table 1) and clear correspondence of the perturbed gene expression patterns to the
target condition (Figure 2-5), we were concerned that we had nonsensically transformed biological states. However,
the strong signal of biological function (Table 2, Table S2) and continued selection of the same positively perturbed
genes leading to the target gene expression pattern suggests that the algorithm shifts the expression patterns in a
biologically meaningful way. Thus, TSPG could be a novel method to detect genetic subsystems that are responsible for
differentiating between both differing tissues as well as wild type and aberrant tissue states. Furthermore, generative
models, particularly GANs, have been sparingly used in the field of biology. This can be attributed to a multitude of
factors including the limited number of adequate datasets and the unnatural structure of RNAseq data when compared
to images and language waveforms. This work serves as a proof of concept that GANs can be applied to RNAseq data
to uncover meaningful gene expression patterns between different human tissue samples.
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